基于Eikonal方程的最小测地模型能够在各种图像分割场景中找到合适的解决方案。现有的基于测地的分割方法通常与几何正则化术语一起利用图像特征,例如欧几里德曲线长度或曲率惩罚长度,用于计算测地曲线。在本文中,我们考虑了一个更复杂的问题:在先前用凸形形状找到曲率惩罚的测距路径。我们建立了依赖于取向升降策略的新测地模型,通过该曲线可以映射到高维定向依赖的空间。凸起形状以前用于构建编码特定曲率约束的局部测地度量的约束。然后,可以通过最先进的Hamiltonian快速行进方法有效地计算定向空间中的测地距离和相应的闭合大气路。此外,我们将所提出的测地模型应用于活动轮廓,导致有效的交互式图像分割算法,其保留凸起形状的优点和曲率损失。
translated by 谷歌翻译
Semi-supervised object detection is important for 3D scene understanding because obtaining large-scale 3D bounding box annotations on point clouds is time-consuming and labor-intensive. Existing semi-supervised methods usually employ teacher-student knowledge distillation together with an augmentation strategy to leverage unlabeled point clouds. However, these methods adopt global augmentation with scene-level transformations and hence are sub-optimal for instance-level object detection. In this work, we propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection. In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds, making the augmented data more useful for object detector training. Extensive experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods under various experimental settings. The source code will be available at https://github.com/nomiaro/OPA.
translated by 谷歌翻译
Anticipating future actions based on video observations is an important task in video understanding, which would be useful for some precautionary systems that require response time to react before an event occurs. Since the input in action anticipation is only pre-action frames, models do not have enough information about the target action; moreover, similar pre-action frames may lead to different futures. Consequently, any solution using existing action recognition models can only be suboptimal. Recently, researchers have proposed using a longer video context to remedy the insufficient information in pre-action intervals, as well as the self-attention to query past relevant moments to address the anticipation problem. However, the indirect use of video input features as the query might be inefficient, as it only serves as the proxy to the anticipation goal. To this end, we propose an inductive attention model, which transparently uses prior prediction as the query to derive the anticipation result by induction from past experience. Our method naturally considers the uncertainty of multiple futures via the many-to-many association. On the large-scale egocentric video datasets, our model not only shows consistently better performance than state of the art using the same backbone, and is competitive to the methods that employ a stronger backbone, but also superior efficiency in less model parameters.
translated by 谷歌翻译
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations. Recent advances accomplish this task by leveraging clustering-based pseudo labels, but these pseudo labels are inevitably noisy which deteriorate model performance. In this paper, we propose a Neighbour Consistency guided Pseudo Label Refinement (NCPLR) framework, which can be regarded as a transductive form of label propagation under the assumption that the prediction of each example should be similar to its nearest neighbours'. Specifically, the refined label for each training instance can be obtained by the original clustering result and a weighted ensemble of its neighbours' predictions, with weights determined according to their similarities in the feature space. In addition, we consider the clustering-based unsupervised person ReID as a label-noise learning problem. Then, we proposed an explicit neighbour consistency regularization to reduce model susceptibility to over-fitting while improving the training stability. The NCPLR method is simple yet effective, and can be seamlessly integrated into existing clustering-based unsupervised algorithms. Extensive experimental results on five ReID datasets demonstrate the effectiveness of the proposed method, and showing superior performance to state-of-the-art methods by a large margin.
translated by 谷歌翻译
Fake videos represent an important misinformation threat. While existing forensic networks have demonstrated strong performance on image forgeries, recent results reported on the Adobe VideoSham dataset show that these networks fail to identify fake content in videos. In this paper, we propose a new network that is able to detect and localize a wide variety of video forgeries and manipulations. To overcome challenges that existing networks face when analyzing videos, our network utilizes both forensic embeddings to capture traces left by manipulation, context embeddings to exploit forensic traces' conditional dependencies upon local scene content, and spatial attention provided by a deep, transformer-based attention mechanism. We create several new video forgery datasets and use these, along with publicly available data, to experimentally evaluate our network's performance. These results show that our proposed network is able to identify a diverse set of video forgeries, including those not encountered during training. Furthermore, our results reinforce recent findings that image forensic networks largely fail to identify fake content in videos.
translated by 谷歌翻译
We propose LiDAL, a novel active learning method for 3D LiDAR semantic segmentation by exploiting inter-frame uncertainty among LiDAR frames. Our core idea is that a well-trained model should generate robust results irrespective of viewpoints for scene scanning and thus the inconsistencies in model predictions across frames provide a very reliable measure of uncertainty for active sample selection. To implement this uncertainty measure, we introduce new inter-frame divergence and entropy formulations, which serve as the metrics for active selection. Moreover, we demonstrate additional performance gains by predicting and incorporating pseudo-labels, which are also selected using the proposed inter-frame uncertainty measure. Experimental results validate the effectiveness of LiDAL: we achieve 95% of the performance of fully supervised learning with less than 5% of annotations on the SemanticKITTI and nuScenes datasets, outperforming state-of-the-art active learning methods. Code release: https://github.com/hzykent/LiDAL.
translated by 谷歌翻译
Breast cancer is the second most common type of cancer in women in Canada and the United States, representing over 25% of all new female cancer cases. Neoadjuvant chemotherapy treatment has recently risen in usage as it may result in a patient having a pathologic complete response (pCR), and it can shrink inoperable breast cancer tumors prior to surgery so that the tumor becomes operable, but it is difficult to predict a patient's pathologic response to neoadjuvant chemotherapy. In this paper, we investigate the efficacy of leveraging learnt volumetric deep features from a newly introduced magnetic resonance imaging (MRI) modality called synthetic correlated diffusion imaging (CDI$^s$) for the purpose of pCR prediction. More specifically, we leverage a volumetric convolutional neural network to learn volumetric deep radiomic features from a pre-treatment cohort and construct a predictor based on the learnt features using the post-treatment response. As the first study to explore the utility of CDI$^s$ within a deep learning perspective for clinical decision support, we evaluated the proposed approach using the ACRIN-6698 study against those learnt using gold-standard imaging modalities, and found that the proposed approach can provide enhanced pCR prediction performance and thus may be a useful tool to aid oncologists in improving recommendation of treatment of patients. Subsequently, this approach to leverage volumetric deep radiomic features (which we name Cancer-Net BCa) can be further extended to other applications of CDI$^s$ in the cancer domain to further improve prediction performance.
translated by 谷歌翻译
Improving model's generalizability against domain shifts is crucial, especially for safety-critical applications such as autonomous driving. Real-world domain styles can vary substantially due to environment changes and sensor noises, but deep models only know the training domain style. Such domain style gap impedes model generalization on diverse real-world domains. Our proposed Normalization Perturbation (NP) can effectively overcome this domain style overfitting problem. We observe that this problem is mainly caused by the biased distribution of low-level features learned in shallow CNN layers. Thus, we propose to perturb the channel statistics of source domain features to synthesize various latent styles, so that the trained deep model can perceive diverse potential domains and generalizes well even without observations of target domain data in training. We further explore the style-sensitive channels for effective style synthesis. Normalization Perturbation only relies on a single source domain and is surprisingly effective and extremely easy to implement. Extensive experiments verify the effectiveness of our method for generalizing models under real-world domain shifts.
translated by 谷歌翻译
Airport runway segmentation can effectively reduce the accident rate during the landing phase, which has the largest risk of flight accidents. With the rapid development of deep learning, related methods have good performance on segmentation tasks and can be well adapted to complex scenes. However, the lack of large-scale, publicly available datasets in this field makes the development of methods based on deep learning difficult. Therefore, we propose a Benchmark for Airport Runway Segmentation, named BARS. Meanwhile, a semi-automatic annotation pipeline is designed to reduce the workload of annotation. BARS has the largest dataset with the richest categories and the only instance annotation in the field. The dataset, which is collected using the X-Plane simulation platform, contains 10,002 images and 29,347 instances with three categories. We evaluate eight representative instance segmentation methods on BARS and analyze their performance. Based on the characteristic of the airport runway with a regular shape, we propose a plug-and-play smoothing post-processing module (SPPM) and a contour point constraint loss (CPCL) function to smooth segmentation results for mask-based and contour-based methods, respectively. Furthermore, a novel evaluation metric named average smoothness (AS) is developed to measure smoothness. The experiments show that existing instance segmentation methods can achieve prediction results with good performance on BARS. SPPM and CPCL can improve the average accuracy by 0.9% and 1.13%, respectively. And the average smoothness enhancements for SPPM and CPCL are more than 50% and 28%, respectively.
translated by 谷歌翻译
本文提出了一种新颖的视频介绍方法。我们做出了三个主要贡献:首先,我们通过引入基于贴片的同型(DEPTH)扩展了以前的变压器,以补丁的对齐方式扩展了贴片对齐,该均值(DEPTH)改善了补丁级的功能对齐,而没有其他有各种变形的监督和受益的挑战场景。其次,我们引入了基于面膜修剪的贴片注意力(MPPA),以通过修剪较少的基本功能和使用显着性图来改善贴合的功能匹配。MPPA用无效的像素增强了扭曲令牌之间的匹配精度。第三,我们引入了空间加权适配器(STA)模块,以在从深度中学到的变形因子的指导下,准确地关注空间代币,尤其是对于具有敏捷运动的视频。实验结果表明,我们的方法在定性和定量上优于最新方法,并实现了新的最新方法。
translated by 谷歌翻译